Resultados del Trabajo Fin de Grado

Resultados DL3D

Resultados con Deep Learning con solo volúmenes 3D y con el modelo DenseNet121

Set Batch Size LR Weight Decay Dropout Preprocesado Accuracy F1 TPR TNR G-Mean
TEST 4 0.0010 0.00000 0.3 (64,64,64) HU [-1000,400] 0.696 0.680 0.679 0.709 0.691
VALIDATION 4 0.0010 0.00000 0.3 (64,64,64) HU [-1000,400] 0.720 0.697 0.720 0.722 0.715
TEST 16 0.0010 0.00000 0.4 (64,64,64) HU [-1000,400] 0.680 0.687 0.747 0.619 0.674
VALIDATION 16 0.0010 0.00000 0.4 (64,64,64) HU [-1000,400] 0.650 0.640 0.676 0.627 0.650
TEST 16 0.0010 0.00000 0.3 (64,64,64) HU [-1000,400] 0.680 0.713 0.830 0.542 0.666
VALIDATION 16 0.0010 0.00000 0.3 (64,64,64) HU [-1000,400] 0.660 0.626 0.633 0.685 0.655
TEST 8 0.0010 0.00000 0.2 (64,64,64) HU [-1000,400] 0.656 0.664 0.733 0.592 0.652
VALIDATION 8 0.0010 0.00000 0.2 (64,64,64) HU [-1000,400] 0.650 0.620 0.631 0.664 0.643
TEST 16 0.0010 0.00001 0.4 (128,128,128) HU [-1350,150] 0.664 0.655 0.664 0.662 0.650
VALIDATION 16 0.0010 0.00001 0.4 (128,128,128) HU [-1350,150] 0.650 0.629 0.656 0.653 0.646
TEST 16 0.0010 0.00000 0.2 (64,64,64) HU [-1000,400] 0.656 0.648 0.697 0.620 0.645
VALIDATION 16 0.0010 0.00000 0.2 (64,64,64) HU [-1000,400] 0.660 0.624 0.609 0.702 0.650
TEST 32 0.0010 0.00000 0.2 (64,64,64) HU [-1350,150] 0.664 0.629 0.629 0.692 0.644
VALIDATION 32 0.0010 0.00000 0.2 (64,64,64) HU [-1350,150] 0.690 0.668 0.676 0.707 0.684
TEST 32 0.0010 0.00000 0.3 (64,64,64) HU [-1350,150] 0.656 0.679 0.783 0.544 0.643
VALIDATION 32 0.0010 0.00000 0.3 (64,64,64) HU [-1350,150] 0.630 0.656 0.760 0.520 0.622
TEST 4 0.0010 0.00000 0.2 (64,64,64) HU [-1350,150] 0.640 0.659 0.750 0.546 0.636
VALIDATION 4 0.0010 0.00000 0.2 (64,64,64) HU [-1350,150] 0.680 0.673 0.716 0.647 0.677
TEST 8 0.0010 0.00001 0.4 (64,64,64) HU [-1000,400] 0.640 0.674 0.800 0.501 0.629
VALIDATION 8 0.0010 0.00001 0.4 (64,64,64) HU [-1000,400] 0.670 0.664 0.720 0.627 0.663
TEST 8 0.0010 0.00000 0.4 (64,64,64) HU [-1350,150] 0.656 0.710 0.867 0.465 0.626
VALIDATION 8 0.0010 0.00000 0.4 (64,64,64) HU [-1350,150] 0.680 0.688 0.762 0.616 0.674
TEST 4 0.0010 0.00001 0.5 (128,128,128) HU [-1000,400] 0.648 0.671 0.783 0.534 0.619
VALIDATION 4 0.0010 0.00001 0.5 (128,128,128) HU [-1000,400] 0.650 0.655 0.736 0.571 0.634
TEST 4 0.0010 0.00000 0.4 (64,64,64) HU [-1350,150] 0.616 0.643 0.730 0.511 0.601
VALIDATION 4 0.0010 0.00000 0.4 (64,64,64) HU [-1350,150] 0.690 0.703 0.784 0.616 0.683
TEST 4 0.0010 0.00000 0.4 (128,256,256) HU [-1350,150] 0.600 0.641 0.761 0.452 0.572
VALIDATION 4 0.0010 0.00000 0.4 (128,256,256) HU [-1350,150] 0.670 0.669 0.720 0.635 0.668
TEST 8 0.0010 0.00000 0.4 (128,256,256) HU [-1350,150] 0.600 0.646 0.798 0.424 0.558
VALIDATION 8 0.0010 0.00000 0.4 (128,256,256) HU [-1350,150] 0.690 0.709 0.804 0.595 0.679
TEST 2 0.0001 0.00000 0.2 (128,256,256) HU [-1350,150] 0.576 0.605 0.714 0.453 0.541
VALIDATION 2 0.0001 0.00000 0.2 (128,256,256) HU [-1350,150] 0.660 0.677 0.784 0.558 0.656
TEST 8 0.0010 0.00000 0.2 (128,256,256) HU [-1000,400] 0.592 0.606 0.697 0.501 0.539
VALIDATION 8 0.0010 0.00000 0.2 (128,256,256) HU [-1000,400] 0.660 0.641 0.651 0.664 0.642
TEST 2 0.0001 0.00001 0.5 (128,128,128) HU [-1000,400] 0.536 0.527 0.580 0.501 0.522
VALIDATION 2 0.0001 0.00001 0.5 (128,128,128) HU [-1000,400] 0.600 0.570 0.602 0.591 0.587
TEST 4 0.0010 0.00001 0.5 (128,128,128) HU [-1350,150] 0.544 0.527 0.571 0.515 0.519
VALIDATION 4 0.0010 0.00001 0.5 (128,128,128) HU [-1350,150] 0.640 0.637 0.698 0.593 0.641

Resultados DL3D multimodal

Resultados con Deep Learning con volúmenes 3D y datos clínicos (modelo multimodal) con el modelo DenseNet121

Set Batch Size LR Weight Decay Dropout Preprocesado Accuracy F1 TPR TNR G-Mean
TEST40.00100.4(64,64,64) HU [-1000,400]0.5120.4590.4560.5590.469
VALIDATION40.00100.4(64,64,64) HU [-1000,400]0.7300.7000.7000.7600.721
TEST40.00100.4(64,64,64) HU [-1350,150]0.4880.4600.4580.5150.448
VALIDATION40.00100.4(64,64,64) HU [-1350,150]0.7100.6860.7000.7240.706
TEST160.00100.4(64,64,64) HU [-1000,400]0.4800.5450.7000.2880.428
VALIDATION160.00100.4(64,64,64) HU [-1000,400]0.6600.6790.7840.5560.618
TEST160.00100.4(64,64,64) HU [-1350,150]0.4960.5520.6620.3440.413
VALIDATION160.00100.4(64,64,64) HU [-1350,150]0.6500.6850.8070.5200.561
TEST40.000100.4(64,64,64) HU [-1350,150]0.5520.6320.8330.2970.347
VALIDATION40.000100.4(64,64,64) HU [-1350,150]0.5700.6510.8710.3160.369
TEST40.000100.4(64,64,64) HU [-1000,400]0.5040.5650.7610.2680.259
VALIDATION40.000100.4(64,64,64) HU [-1000,400]0.5000.5500.7220.3180.340
TEST160.000100.4(64,64,64) HU [-1350,150]0.5200.5600.8180.2310.139
VALIDATION160.000100.4(64,64,64) HU [-1350,150]0.4800.5060.8000.2360.085
TEST160.000100.4(64,64,64) HU [-1000,400]0.4880.5150.8000.2140.053
VALIDATION160.000100.4(64,64,64) HU [-1000,400]0.5100.5210.8000.2600.110

Resultados DL3D Fine-tuning

Resultados en test con validación cruzada y distintas funciones de pérdida

Set Dataset Modelo Fine Tune Batch Size LR Weight Decay Dropout Pretrained Size Preprocesado Loss Stop Criterion Accuracy F1 TPR TNR G-Mean
TESTnodulemnist3dResNet3Ddescongelado161e-41e-50(64,64,64)(64,64,64) HU[-1000,400]CrossEntropyLoss+ContrastiveLosspérdida0.59200.59950.66370.53300.5792
TESTnodulemnist3dDenseNet121descongelado161e-41e-50(64,64,64)(64,64,64) HU[-1000,400]CrossEntropyLosspérdida0.58400.58100.62880.54620.5792
TESTnodulemnist3dResNet3Ddescongelado161e-41e-50(64,64,64)(64,64,64) HU[-1000,400]CrossEntropyLoss+TripletLosspérdida0.59200.59560.67880.51760.5695
TESTorganmnist3dDenseNet121congelado161e-41e-50.3(64,64,64)(64,64,64) HU[-1000,400]CrossEntropyLoss+TripletLossaccuracy0.58400.59900.66210.51430.5660

Resultados con solo datos clínicos con AA clásico

KNN

n_neighborsweightsmetricAccuracyF1TPRTNRG-Mean
5uniformeuclidean0.5200.4970.5090.5330.509
3uniformeuclidean0.5120.4760.4740.5470.503
7uniformmanhattan0.5120.4680.4580.5630.503
5distanceeuclidean0.4800.4660.4760.4870.478
9distancemanhattan0.4800.4040.3740.5770.452

Random Forest

n_estimatorsmax_depthmin_samples_splitAccuracyF1TPRTNRG-Mean
100520.5520.4430.3730.7120.515
2001040.5360.4420.3920.6650.508
300None20.5040.4430.4240.5760.485

LightGBM

n_estimatorsmax_depthlearning_rateAccuracyF1TPRTNRG-Mean
20060.050.5520.4730.4260.6670.531
10040.10.5440.4770.4420.6370.528
30080.030.5440.4680.4260.6530.524

XGBoost

n_estimatorsmax_depthlearning_rateAccuracyF1TPRTNRG-Mean
40060.010.5760.4980.4440.6950.553
20050.050.5680.5030.4610.6640.552
350120.020.5680.4940.4440.6790.548
30080.020.5680.4940.4440.6790.548
30080.030.5600.4890.4440.6790.547
15080.070.5600.4890.4420.6640.540
250100.050.5600.4790.4260.6790.534
10040.10.5520.4800.4440.6510.534
10030.20.5360.4550.4080.6490.512

Resultados radiómica combinado con DML y datos clínicos

Radiómica + sin datos clínicos + sin DML

Modelo Parámetros Scaler Preprocesado Reducción de dimensionalidad Accuracy F1 TPR TNR G-Mean
KNN n_neighbors=5, weights=distance StandardScaler (128,128,128), HU [-1350,150] - 0.744 0.713 0.724 0.765 0.739
LightGBM n_estimators=200, learning_rate=0.1, num_leaves=31 - (28,28,28), HU [-1350,150] Variance Threshold (0.01) 0.744 0.703 0.680 0.791 0.728
KNN n_neighbors=5, weights=distance - (128,128,128), HU [-1350,150] PCA (99%) 0.736 0.692 0.688 0.779 0.724
KNN n_neighbors=7, weights=distance MinMaxScaler (128,256,256), HU [-1350,150] - 0.728 0.711 0.688 0.766 0.719
KNN n_neighbors=5, weights=uniform StandardScaler (128,128,128), HU [-1350,150] - 0.720 0.679 0.724 0.721 0.716
KNN n_neighbors=7, weights=distance - (128,128,128), HU [-1350,150] Variance Threshold (0.01) 0.712 0.702 0.741 0.692 0.711
KNN n_neighbors=7, weights=distance - (128,128,128), HU [-1350,150] - 0.712 0.702 0.741 0.692 0.711
KNN n_neighbors=7, weights=distance MinMaxScaler (128,128,128), HU [-1000,400] PCA (90%) 0.712 0.706 0.756 0.674 0.709
LightGBM n_estimators=100, learning_rate=0.1, num_leaves=50 StandardScaler (28,28,28), HU [-1350,150] Variance Threshold (0.01) 0.728 0.679 0.645 0.791 0.708
LightGBM n_estimators=50, learning_rate=0.1, num_leaves=50 StandardScaler (28,28,28), HU [-1350,150] Variance Threshold (0.01) 0.720 0.676 0.647 0.777 0.705
SVM C=10.0, kernel=rbf, gamma=scale - (128,256,256), HU [-1000,400] PCA (99%) 0.712 0.683 0.688 0.735 0.704
LightGBM n_estimators=100, learning_rate=0.1, num_leaves=50 - (28,28,28), HU [-1350,150] Variance Threshold (0.01) 0.712 0.681 0.682 0.733 0.703
SVM C=10.0, kernel=rbf, gamma=scale - (128,256,256), HU [-1000,400] PCA (95%) 0.712 0.683 0.688 0.734 0.702
KNN n_neighbors=5, weights=uniform - (128,128,128), HU [-1350,150] PCA (99%) 0.712 0.673 0.688 0.735 0.702
KNN n_neighbors=3, weights=distance StandardScaler (128,128,128), HU [-1000,400] Variance Threshold (0.01) 0.712 0.679 0.683 0.736 0.702
KNN n_neighbors=7, weights=distance - (128,256,256), HU [-1350,150] PCA (99%) 0.704 0.678 0.706 0.707 0.701
KNN n_neighbors=7, weights=distance StandardScaler (128,128,128), HU [-1000,400] PCA (95%) 0.704 0.696 0.753 0.662 0.701
DecisionTree max_depth=5, min_samples_split=2 StandardScaler (128,128,128), HU [-1350,150] PCA (95%) 0.704 0.677 0.686 0.720 0.700
KNN n_neighbors=7, weights=distance MinMaxScaler (128,128,128), HU [-1350,150] - 0.712 0.664 0.653 0.765 0.700
KNN n_neighbors=5, weights=distance StandardScaler (128,256,256), HU [-1000,400] Variance Threshold (0.01) 0.712 0.674 0.668 0.748 0.700
KNN n_neighbors=5, weights=distance MinMaxScaler (128,128,128), HU [-1350,150] - 0.712 0.672 0.689 0.737 0.699
KNN n_neighbors=7, weights=distance StandardScaler (128,128,128), HU [-1000,400] PCA (90%) 0.704 0.703 0.774 0.645 0.699
KNN n_neighbors=5, weights=distance - (128,128,128), HU [-1350,150] PCA (95%) 0.704 0.669 0.670 0.735 0.698
LightGBM n_estimators=50, learning_rate=0.1, num_leaves=31 - (28,28,28), HU [-1350,150] Variance Threshold (0.01) 0.704 0.682 0.698 0.704 0.698
LightGBM n_estimators=200, learning_rate=0.1, num_leaves=31 MinMaxScaler (28,28,28), HU [-1350,150] Variance Threshold (0.01) 0.712 0.675 0.679 0.733 0.698
KNN n_neighbors=5, weights=distance StandardScaler (128,128,128), HU [-1350,150] Variance Threshold (0.01) 0.712 0.670 0.667 0.752 0.698
KNN n_neighbors=5, weights=distance MinMaxScaler (128,128,128), HU [-1000,400] PCA (90%) 0.704 0.675 0.667 0.733 0.698
KNN n_neighbors=7, weights=distance StandardScaler (128,256,256), HU [-1350,150] Variance Threshold (0.01) 0.704 0.665 0.671 0.734 0.696
SVM C=10.0, kernel=rbf, gamma=scale - (128,256,256), HU [-1000,400] PCA (90%) 0.696 0.687 0.738 0.662 0.695
KNN n_neighbors=7, weights=distance - (128,128,128), HU [-1000,400] - 0.696 0.686 0.723 0.678 0.695
KNN n_neighbors=5, weights=distance - (128,128,128), HU [-1350,150] PCA (90%) 0.704 0.664 0.670 0.735 0.694
KNN n_neighbors=5, weights=distance MinMaxScaler (128,256,256), HU [-1000,400] PCA (90%) 0.696 0.673 0.683 0.705 0.693
KNN n_neighbors=5, weights=distance StandardScaler (128,128,128), HU [-1000,400] - 0.696 0.670 0.686 0.704 0.693
RandomForest n_estimators=50, max_depth=5, min_samples_split=5 MinMaxScaler (128,128,128), HU [-1000,400] PCA (90%) 0.704 0.668 0.633 0.763 0.692
KNN n_neighbors=5, weights=uniform StandardScaler (128,128,128), HU [-1350,150] Variance Threshold (0.01) 0.704 0.663 0.667 0.737 0.692
XGBoost n_estimators=100, learning_rate=0.1, max_depth=5 MinMaxScaler (128,128,128), HU [-1000,400] PCA (90%) 0.704 0.667 0.667 0.736 0.692
XGBoost n_estimators=100, learning_rate=0.1, max_depth=5 - (28,28,28), HU [-1350,150] - 0.704 0.655 0.614 0.778 0.691
KNN n_neighbors=7, weights=distance - (128,128,128), HU [-1350,150] PCA (99%) 0.712 0.648 0.618 0.793 0.690
LightGBM n_estimators=100, learning_rate=0.01, num_leaves=50 MinMaxScaler (128,128,128), HU [-1350,150] PCA (95%) 0.712 0.657 0.611 0.791 0.690

Radiómica + con datos clínicos + sin DML

Características Modelo Parámetros Scaler Preprocesado Reducción de dimensionalidad Accuracy F1 TPR TNR G-Mean
Extendidas LightGBM n_estimators=100, learning_rate=0.1, num_leaves=31 StandardScaler (28,28,28), HU [-1350,150] Variance Threshold (0.01) 0.760 0.725 0.700 0.805 0.746
Originales GradientBoosting n_estimators=200, learning_rate=0.01, max_depth=5 StandardScaler (256,512,512), HU [-1000,400] PCA (90%) 0.752 0.709 0.665 0.821 0.736
Extendidas KNN n_neighbors=5, weights=distance MinMaxScaler (128,128,128), HU [-1350,150] - 0.728 0.684 0.689 0.766 0.712
Extendidas KNN n_neighbors=7, weights=distance - (128,128,128), HU [-1350,150] - 0.712 0.702 0.741 0.692 0.711
Originales GradientBoosting n_estimators=100, learning_rate=0.01, max_depth=5 - (256,512,512), HU [-1000,400] PCA (90%) 0.728 0.673 0.614 0.822 0.709
Originales XGBoost n_estimators=200, learning_rate=0.1, max_depth=null MinMaxScaler (256,512,512), HU [-1350,150] - 0.728 0.674 0.632 0.808 0.707
Extendidas LightGBM n_estimators=200, learning_rate=0.1, num_leaves=50 StandardScaler (28,28,28), HU [-1350,150] Variance Threshold (0.01) 0.736 0.678 0.644 0.805 0.707
Extendidas LightGBM n_estimators=50, learning_rate=0.1, num_leaves=31 StandardScaler (28,28,28), HU [-1350,150] Variance Threshold (0.01) 0.720 0.676 0.647 0.777 0.705
Extendidas KNN n_neighbors=5, weights=uniform MinMaxScaler (128,128,128), HU [-1350,150] - 0.720 0.678 0.689 0.752 0.705
Originales XGBoost n_estimators=100, learning_rate=0.1, max_depth=null - (256,512,512), HU [-1350,150] - 0.720 0.666 0.632 0.793 0.701
Extendidas RandomForest n_estimators=200, max_depth=10, min_samples_split=2 - (128,128,128), HU [-1000,400] PCA (90%) 0.720 0.667 0.612 0.808 0.700
Originales XGBoost n_estimators=200, learning_rate=0.1, max_depth=5 - (256,512,512), HU [-1350,150] - 0.712 0.667 0.650 0.764 0.699
Originales GradientBoosting n_estimators=100, learning_rate=0.01, max_depth=5 - (256,512,512), HU [-1350,150] - 0.720 0.666 0.598 0.820 0.699
Extendidas LightGBM n_estimators=200, learning_rate=0.1, num_leaves=50 - (28,28,28), HU [-1350,150] Variance Threshold (0.01) 0.720 0.671 0.661 0.762 0.697
Originales SVM C=1.0, kernel=rbf, gamma=scale StandardScaler (128,128,128), HU [-1350,150] Variance Threshold (0.01) 0.720 0.663 0.615 0.808 0.697
Originales GradientBoosting n_estimators=200, learning_rate=0.01, max_depth=5 - (256,512,512), HU [-1350,150] - 0.712 0.661 0.615 0.791 0.696
Extendidas RandomForest n_estimators=100, max_depth=10, min_samples_split=5 - (128,128,128), HU [-1000,400] PCA (90%) 0.720 0.659 0.595 0.822 0.695
Originales GradientBoosting n_estimators=50, learning_rate=0.01, max_depth=null StandardScaler (256,512,512), HU [-1000,400] PCA (90%) 0.712 0.662 0.614 0.793 0.695
Extendidas LightGBM n_estimators=50, learning_rate=0.1, num_leaves=50 - (28,28,28), HU [-1350,150] Variance Threshold (0.01) 0.704 0.673 0.680 0.719 0.695
Extendidas KNN n_neighbors=7, weights=distance - (128,128,128), HU [-1000,400] - 0.696 0.686 0.723 0.678 0.695
Originales XGBoost n_estimators=50, learning_rate=0.1, max_depth=10 - (256,512,512), HU [-1000,400] PCA (95%) 0.712 0.667 0.645 0.762 0.694
Originales XGBoost n_estimators=50, learning_rate=0.1, max_depth=5 - (256,512,512), HU [-1350,150] - 0.712 0.658 0.614 0.793 0.694
Originales GradientBoosting n_estimators=200, learning_rate=0.1, max_depth=10 - (256,512,512), HU [-1000,400] PCA (90%) 0.704 0.665 0.648 0.748 0.692
Originales XGBoost n_estimators=100, learning_rate=0.1, max_depth=5 StandardScaler (256,512,512), HU [-1350,150] - 0.712 0.656 0.614 0.792 0.691
Originales GradientBoosting n_estimators=50, learning_rate=0.01, max_depth=5 StandardScaler (256,512,512), HU [-1000,400] PCA (90%) 0.712 0.654 0.595 0.807 0.691
Extendidas XGBoost n_estimators=100, learning_rate=0.1, max_depth=10 StandardScaler (28,28,28), HU [-1350,150] Variance Threshold (0.01) 0.704 0.662 0.630 0.765 0.691
Originales XGBoost n_estimators=50, learning_rate=0.1, max_depth=10 StandardScaler (256,512,512), HU [-1350,150] - 0.712 0.652 0.614 0.793 0.690
Extendidas LightGBM n_estimators=100, learning_rate=0.1, num_leaves=31 - (28,28,28), HU [-1350,150] Variance Threshold (0.01) 0.704 0.665 0.662 0.733 0.690
Originales XGBoost n_estimators=200, learning_rate=0.1, max_depth=5 StandardScaler (256,512,512), HU [-1000,400] PCA (95%) 0.712 0.655 0.611 0.791 0.689
Originales GradientBoosting n_estimators=50, learning_rate=0.01, max_depth=5 - (256,512,512), HU [-1350,150] - 0.704 0.659 0.630 0.763 0.689
Extendidas XGBoost n_estimators=200, learning_rate=0.1, max_depth=10 StandardScaler (28,28,28), HU [-1350,150] Variance Threshold (0.01) 0.704 0.658 0.629 0.764 0.689
Extendidas XGBoost n_estimators=50, learning_rate=0.01, max_depth=10 MinMaxScaler (128,128,128), HU [-1350,150] PCA (95%) 0.704 0.658 0.629 0.764 0.689

Radiómica + sin datos clínicos + con DML

Número de vecinos Weights Scaler Preprocesado Algoritmo DML Dimensión DML Accuracy F1 TPR TNR G-Mean
5distanceStandardScaler(128,128,128), HU [-1350,150]ncaall0.7440.7130.7240.7650.739
5distance-(128,128,128), HU [-1350,150]nca200.7360.7070.7230.7490.732
5distance-(128,128,128), multiwindowinglmnnall0.7330.7040.7270.7380.731
7distanceStandardScaler(64,64,64), no HUlmnnall0.7470.6960.6670.8100.725
5uniformMinMaxScaler(64,64,64), no HUlmnn100.7280.6970.6880.7660.721
5distance-(64,64,64), no HUlmnn200.7520.6860.5980.8800.721
5distanceMinMaxScaler(64,64,64), no HUlmnn100.7280.6910.6700.7800.720
3distance-(128,128,128), HU [-1350,150]lmnnall0.7200.7050.7580.6900.720
7distanceMinMaxScaler(128,256,256), HU [-1350,150]ncaall0.7280.6910.6880.7660.719
3uniformStandardScaler(64,64,64), no HUlmnnall0.7330.6760.6360.8100.717
3distanceMinMaxScaler(64,64,64), no HUlmnn200.7200.6920.6910.7460.717
3uniformMinMaxScaler(64,64,64), no HUlmnn200.7200.6920.6910.7460.717
7distanceStandardScaler(64,64,64), no HUlmnnall0.7200.6920.6890.7470.716
5uniformStandardScaler(128,128,128), HU [-1350,150]ncaall0.7200.6940.7240.7210.716
7distance-(128,128,128), HU [-1350,150]nca300.7120.7020.7410.6920.711
5distance-(128,256,256), HU [-1350,150]nca100.7120.6910.7020.7230.710
7uniformStandardScaler(64,64,64), no HUlmnnall0.7120.6850.6890.7330.710
3distanceMinMaxScaler(128,128,128), HU [-1350,150]lmnn300.7100.6860.7100.7100.709
5uniform-(128,128,128), HU [-1350,150]nca200.7120.6880.7230.7050.709
5uniformStandardScaler(64,64,64), no HUlmnn300.7120.6880.6890.7320.708
5distanceMinMaxScaler(64,64,64), multiwindowinglmnn200.7200.6780.6460.7790.708
3uniform-(64,64,64), no HUlmnn300.7120.6830.6910.7330.708
3uniformMinMaxScaler(64,64,64), no HUlmnn300.7120.6880.6890.7320.707
5distance-(128,128,128), HU [-1350,150]nca200.7200.6760.6890.7490.707
7distanceMinMaxScaler(64,64,64), no HUlmnnall0.7330.6730.6360.8100.707
7distanceStandardScaler(128,256,256), HU [-1000,400]ncaall0.7040.6940.7380.6780.705
7uniformMinMaxScaler(64,64,64), no HUlmnn300.7120.6810.6710.7470.705
5distanceMinMaxScaler(128,128,128), no HUlmnn200.7120.6820.6680.7480.705
5uniform-(64,64,64), no HUlmnn200.7360.6690.5820.8650.704
5distanceStandardScaler(64,64,64), multiwindowinglmnn200.7200.6720.6420.7800.704
3distance-(128,128,128), multiwindowinglmnnall0.7070.6850.7270.6900.704
7distance-(128,128,128), HU [-1000,400]nca100.7040.6900.7230.6920.704
7distance-(128,128,128), HU [-1350,150]nca100.7040.6960.7410.6780.703
5uniform-(128,128,128), multiwindowinglmnnall0.7070.6720.6970.7140.703
5uniform-(128,256,256), HU [-1350,150]nca100.7040.6910.7200.6930.703
3distanceMinMaxScaler(64,64,64), no HUlmnn200.7040.6790.6910.7180.702
7distanceStandardScaler(128,256,256), HU [-1350,150]nca200.7120.6750.6530.7640.702
7distance-(128,128,128), HU [-1350,150]nca200.7200.6650.6550.7790.702
7distanceMinMaxScaler(64,64,64), no HUlmnnall0.7040.6810.6890.7180.701
7distanceStandardScaler(128,128,128), HU [-1000,400]lmnn100.7100.6810.6950.7270.701
5distanceStandardScaler(128,128,128), multiwindowingncaall0.7120.6800.6850.7350.701
5distanceMinMaxScaler(128,128,128), multiwindowingncaall0.7120.6810.6830.7340.701

Radiómica + con datos clínicos + con DML

Número de vecinos Weights Scaler Preprocesado Algoritmo DML Dimensión DML Accuracy F1 TPR TNR G-Mean
5distance-(128,128,128), multiwindowinglmnn200.7470.7270.7580.7380.747
5distanceStandardScaler(128,128,128), multiwindowinglmnn200.7470.7080.6970.7860.739
5uniform-(128,128,128), multiwindowinglmnn200.7330.7150.7580.7140.735
7distanceMinMaxScaler(128,128,128), multiwindowinglmnn200.7330.7080.7270.7380.733
7distance-(128,128,128), multiwindowinglmnn200.7330.7080.7270.7380.731
5distance-(64,64,64), no HUlmnn200.7600.7000.6230.8700.731
5distance-(128,128,128), multiwindowinglmnnall0.7330.7040.7270.7380.731
3uniformMinMaxScaler(64,64,64), no HUlmnn200.7500.6930.6230.8500.724
7uniform-(128,128,128), multiwindowinglmnn200.7200.6960.7270.7140.721
5distance-(64,64,64), no HUlmnn200.7520.6860.5980.8800.721
7uniform-(128,128,128), multiwindowinglmnn200.7200.6970.7270.7140.720
3distance-(128,128,128), HU [-1350,150]lmnnall0.7200.7050.7580.6900.720
7distanceStandardScaler(128,128,128), HU [-1000,400]nca200.7360.6860.6520.8070.718
5uniformStandardScaler(128,128,128), multiwindowinglmnn200.7200.6860.6970.7380.717
5distanceMinMaxScaler(128,128,128), HU [-1350,150]ncaall0.7280.6840.6890.7660.712
7distance-(128,128,128), HU [-1350,150]nca300.7120.7020.7410.6920.711
5uniform-(64,64,64), no HUlmnn200.7400.6780.6020.8500.711
3distanceStandardScaler(128,128,128), multiwindowinglmnn200.7200.6780.6670.7620.710
7distanceMinMaxScaler(128,128,128), multiwindowinglmnnall0.7200.6860.6970.7380.710
3distanceMinMaxScaler(128,128,128), HU [-1350,150]lmnn300.7100.6860.7100.7100.709
7distanceStandardScaler(128,128,128), HU [-1000,400]nca200.7280.6780.6520.7950.708
7distanceStandardScaler(128,128,128), HU [-1000,400]lmnnall0.7070.6860.7270.6900.708
3uniformStandardScaler(64,64,64), no HUlmnn200.7400.6740.6000.8500.708
7distanceStandardScaler(128,128,128), multiwindowinglmnn200.7070.6880.7270.6900.707
7distanceStandardScaler(64,64,64), no HUlmnnall0.7330.6730.6360.8100.707
5uniformMinMaxScaler(128,128,128), HU [-1350,150]ncaall0.7200.6780.6890.7520.705
7uniformStandardScaler(64,64,64), no HUlmnn200.7120.6770.6700.7490.705
7distanceStandardScaler(64,64,64), no HUlmnn200.7120.6770.6700.7490.705
5uniform-(64,64,64), no HUlmnn200.7360.6690.5820.8650.704
3distance-(128,128,128), multiwindowinglmnnall0.7070.6850.7270.6900.704
7distance-(128,128,128), HU [-1350,150]nca100.7040.6960.7410.6780.703
7distanceStandardScaler(128,256,256), HU [-1350,150]nca200.7040.6870.7050.7040.703
5uniform-(128,128,128), multiwindowinglmnnall0.7070.6720.6970.7140.703
7distanceStandardScaler(128,128,128), multiwindowinglmnnall0.7070.6790.6970.7140.701
3distanceMinMaxScaler(64,64,64), multiwindowinglmnn200.7000.6810.7140.6900.701
7distanceStandardScaler(128,128,128), HU [-1000,400]lmnn100.7100.6810.6950.7270.701
7distanceMinMaxScaler(128,128,128), HU [-1350,150]ncaall0.7120.6670.6700.7510.701
5distanceMinMaxScaler(128,128,128), HU [-1350,150]ncaall0.7120.6720.6890.7360.700
3distanceMinMaxScaler(64,64,64), no HUlmnnall0.7200.6560.6060.8100.700
↑ Subir

Explicabilidad del modelo

Visualizaciones Grad-CAM sobre casos representativos de la clasificación:

Grad-CAM caso positivo

Caso sin complicación correctamente clasificado

Grad-CAM caso negativo

Caso con complicación correctamente clasificado

Grad-CAM falso positivo

Ejemplo de falso positivo

Grad-CAM falso negativo

Ejemplo de falso negativo

Análisis SHAP global

SHAP resumen LightGBM

Diagrama resumen de las características más influyentes en la predicción de LightGBM según SHAP.

Análisis SHAP: Verdaderos negativos

Análisis de SHAP de los pacientes clasificados correctamente como negativos.

Análisis SHAP: Verdaderos positivos

Análisis de SHAP de los pacientes clasificados correctamente como positivos.

Análisis SHAP: Errores del modelo

Falsos positivos:
Falsos negativos:

Análisis de SHAP de los pacientes clasificados incorrectamente.